--- annotations_creators: - expert-annotated language: - eng license: unknown multilinguality: monolingual source_datasets: - cardiffnlp/tweet_topic_single task_categories: - text-classification task_ids: - topic-classification dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: test_2020 num_bytes: 66224 num_examples: 376 - name: test_2021 num_bytes: 306974 num_examples: 1693 - name: train_2020 num_bytes: 511564 num_examples: 2858 - name: train_2021 num_bytes: 273056 num_examples: 1516 - name: train_all num_bytes: 784620 num_examples: 4374 - name: validation_2020 num_bytes: 62470 num_examples: 352 - name: validation_2021 num_bytes: 32937 num_examples: 189 - name: train_random num_bytes: 514173 num_examples: 2830 - name: validation_random num_bytes: 62046 num_examples: 354 - name: test_coling2022_random num_bytes: 610185 num_examples: 3399 - name: train_coling2022_random num_bytes: 645545 num_examples: 3598 - name: test_coling2022 num_bytes: 613161 num_examples: 3399 - name: train_coling2022 num_bytes: 642569 num_examples: 3598 - name: train num_bytes: 273056 num_examples: 1516 download_size: 3667198 dataset_size: 5398580 configs: - config_name: default data_files: - split: test_2020 path: data/test_2020-* - split: test_2021 path: data/test_2021-* - split: train_2020 path: data/train_2020-* - split: train_2021 path: data/train_2021-* - split: train_all path: data/train_all-* - split: validation_2020 path: data/validation_2020-* - split: validation_2021 path: data/validation_2021-* - split: train_random path: data/train_random-* - split: validation_random path: data/validation_random-* - split: test_coling2022_random path: data/test_coling2022_random-* - split: train_coling2022_random path: data/train_coling2022_random-* - split: test_coling2022 path: data/test_coling2022-* - split: train_coling2022 path: data/train_coling2022-* - split: train path: data/train-* tags: - mteb - text ---
Topic classification dataset on Twitter with 6 labels. Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021. Tweets were preprocessed before the annotation to normalize some artifacts, converting URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified usernames, we replace its display name (or account name) with symbols {@}. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Social, News, Written | | Reference | https://arxiv.org/abs/2209.09824 | Source datasets: - [cardiffnlp/tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("TweetTopicSingleClassification") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{dimosthenis-etal-2022-twitter, address = {Gyeongju, Republic of Korea}, author = {Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco}, booktitle = {Proceedings of the 29th International Conference on Computational Linguistics}, month = oct, publisher = {International Committee on Computational Linguistics}, title = {{T}witter {T}opic {C}lassification}, year = {2022}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics