utkarsh4430 commited on
Commit
8fed9dd
·
verified ·
1 Parent(s): 501c328

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +70 -35
  2. manifest.json +24 -0
  3. vistoolbench_1204.parquet +3 -0
README.md CHANGED
@@ -1,37 +1,72 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: id
5
- dtype: string
6
- - name: turncase
7
- dtype: string
8
- - name: prompt_category
9
- dtype: string
10
- - name: eval_focus
11
- dtype: string
12
- - name: prompt
13
- dtype: string
14
- - name: images_by_turn
15
- sequence:
16
- sequence:
17
- dtype: image
18
- - name: rubrics
19
- sequence: string
20
- splits:
21
- - name: train
22
- num_bytes: 3506927656
23
- num_examples: 1191
24
- download_size: 3506927656
25
- dataset_size: 3506927656
26
- configs:
27
- - config_name: default
28
- data_files:
29
- - split: train
30
- path: data/*.parquet
31
- ---
32
-
33
- VisuAlToolBench is a challenging benchmark to assess tool-enabled visual perception, transformation, and reasoning in multimodal LLMs. It evaluates whether models can not only think about images but also think with images by actively manipulating visuals (e.g., crop, edit, enhance) and integrating general-purpose tools to solve complex tasks. The dataset contains single-turn and multi-turn tasks across diverse domains, each accompanied by detailed rubrics for systematic evaluation. Parquet files under `data/` are auto-indexed by the Hub and power the Dataset Viewer.
34
-
35
- Paper: [BEYOND SEEING: Evaluating Multimodal LLMs on Tool-enabled Image Perception, Transformation, and Reasoning](https://static.scale.com/uploads/654197dc94d34f66c0f5184e/vtb_paper.pdf)
36
 
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # VisToolBench Dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ A benchmark dataset for evaluating vision-language models on tool-use tasks.
4
 
5
+ ## Dataset Statistics
6
+
7
+ - **Total samples**: 1204
8
+ - **Single-turn**: 603
9
+ - **Multi-turn**: 601
10
+
11
+ ## Schema
12
+
13
+ | Column | Type | Description |
14
+ |--------|------|-------------|
15
+ | `id` | string | Unique task identifier |
16
+ | `turncase` | string | Either "single-turn" or "multi-turn" |
17
+ | `num_turns` | int | Number of conversation turns (1 for single-turn) |
18
+ | `prompt_category` | string | Task category (e.g., "medical", "scientific", "general") |
19
+ | `eval_focus` | string | What aspect is being evaluated (e.g., "visual_reasoning", "tool_use") |
20
+ | `prompt` | string | The user prompt/question. For multi-turn, turns are prefixed with `[Turn N]` |
21
+ | `golden_answer` | string | The reference/ground-truth answer |
22
+ | `image` | Image | Primary image for the task (displayed in HF viewer) |
23
+ | `images` | List[Image] | All images associated with the task |
24
+ | `num_images` | int | Total number of images |
25
+ | `tool_trajectory` | string | JSON string of tool calls made (if applicable) |
26
+ | `rubrics` | string | JSON string of evaluation rubrics with weights and metadata |
27
+
28
+ ## Rubrics Format
29
+
30
+ Each rubric entry contains:
31
+ - `description`: What the rubric evaluates
32
+ - `weight`: Importance weight (1-5)
33
+ - `objective/subjective`: Whether evaluation is objective or subjective
34
+ - `explicit/implicit`: Whether the answer is explicit or implicit in the image
35
+ - `category`: List of categories (e.g., "instruction following", "truthfulness")
36
+ - `critical`: Whether this is a critical rubric ("yes"/"no")
37
+ - `final_answer`: Whether this relates to the final answer ("yes"/"no")
38
+
39
+ ## Usage
40
+
41
+ ```python
42
+ from datasets import load_dataset
43
+
44
+ # Load the dataset
45
+ ds = load_dataset("path/to/dataset")
46
+
47
+ # Access a sample
48
+ sample = ds['train'][0]
49
+ print(sample['prompt'])
50
+ print(sample['image']) # PIL Image
51
+
52
+ # Parse rubrics
53
+ import json
54
+ rubrics = json.loads(sample['rubrics'])
55
+ for rubric_id, rubric in rubrics.items():
56
+ print(f"{rubric['description']} (weight: {rubric['weight']})")
57
+ ```
58
+
59
+ ## Splits
60
+
61
+ - `train`: Full dataset (1204 samples)
62
+
63
+ ## Citation
64
+
65
+ ```
66
+ @article{guo2025beyond,
67
+ title={Beyond seeing: Evaluating multimodal llms on tool-enabled image perception, transformation, and reasoning},
68
+ author={Guo, Xingang and Tyagi, Utkarsh and Gosai, Advait and Vergara, Paula and Park, Jayeon and Montoya, Ernesto Gabriel Hern{\'a}ndez and Zhang, Chen Bo Calvin and Hu, Bin and He, Yunzhong and Liu, Bing and others},
69
+ journal={arXiv preprint arXiv:2510.12712},
70
+ year={2025}
71
+ }
72
+ ```
manifest.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "single_json": "single_turn_data_corrected_with_rubrics_weights.json",
3
+ "multi_json": "multi_turn_data_corrected_with_rubrics_weights.json",
4
+ "counts": {
5
+ "single": 603,
6
+ "multi": 601,
7
+ "total": 1204
8
+ },
9
+ "columns": [
10
+ "id",
11
+ "turncase",
12
+ "num_turns",
13
+ "prompt_category",
14
+ "eval_focus",
15
+ "prompt",
16
+ "golden_answer",
17
+ "image",
18
+ "images",
19
+ "num_images",
20
+ "tool_trajectory",
21
+ "rubrics"
22
+ ],
23
+ "out_parquet": "hf_upload_final_corrected/vistoolbench_1204.parquet"
24
+ }
vistoolbench_1204.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7717b54aeaf237de5c26a334e7049e94aba00988bf0e3d4bf989e22fe91cb87
3
+ size 5981789093