--- license: cc-by-4.0 task_categories: - graph-ml - tabular-classification - tabular-regression language: - en tags: - database-analysis - graph-similarity - federated-learning - schema-matching - wikidata size_categories: - 10B= 0.99] print(f"Pairs with similarity ≥ 0.99: {len(high_sim):,}") ``` **Example rows**: ``` src tgt similarity label edge 26218.0 44011.0 0.9896456 0.0 1 26218.0 44102.0 0.9908572 0.0 1 ``` #### `edges_list_th0.6713.csv` Extended edge list with lower similarity threshold (≥ 0.6713). **Columns**: - `src` (str): Source database ID (padded format, e.g., "00000") - `tgt` (str): Target database ID (padded format) - `similarity` (float): Cosine similarity score [0.6713, 1.0] - `label` (float): Ground truth label **Loading**: ```python import pandas as pd edges = pd.read_csv('edges_list_th0.6713.csv') # Database IDs are strings with leading zeros print(edges['src'].head()) # "00000", "00000", "00000", ... # Filter by similarity threshold threshold = 0.90 filtered = edges[edges['similarity'] >= threshold] ``` #### `edge_structural_properties_GED_0.94.csv` Detailed structural properties for database pairs at threshold 0.94. **Columns**: - `db_id1` (int): First database ID - `db_id2` (int): Second database ID - `jaccard_table_names` (float): Jaccard similarity of table names [0.0, 1.0] - `jaccard_columns` (float): Jaccard similarity of column names [0.0, 1.0] - `jaccard_data_types` (float): Jaccard similarity of data types [0.0, 1.0] - `hellinger_distance_data_types` (float): Hellinger distance between data type distributions - `graph_edit_distance` (float): Graph edit distance between schemas - `common_tables` (int): Number of common table names - `common_columns` (int): Number of common column names - `common_data_types` (int): Number of common data types **Loading**: ```python import pandas as pd edge_props = pd.read_csv('edge_structural_properties_GED_0.94.csv') # Find pairs with high structural similarity high_jaccard = edge_props[edge_props['jaccard_columns'] >= 0.5] print(f"Pairs with ≥50% column overlap: {len(high_jaccard):,}") # Analyze graph edit distance print(f"Mean GED: {edge_props['graph_edit_distance'].mean():.2f}") print(f"Median GED: {edge_props['graph_edit_distance'].median():.2f}") ``` #### `distdiv_results.csv` Distribution divergence metrics for database pairs. **Columns**: - `src` (int): Source database ID - `tgt` (int): Target database ID - `distdiv` (float): Distribution divergence score - `overlap_ratio` (float): Column overlap ratio [0.0, 1.0] - `shared_column_count` (int): Number of shared columns **Loading**: ```python import pandas as pd distdiv = pd.read_csv('distdiv_results.csv') # Find pairs with low divergence (more similar distributions) similar_dist = distdiv[distdiv['distdiv'] < 15.0] # Analyze overlap patterns high_overlap = distdiv[distdiv['overlap_ratio'] >= 0.3] print(f"Pairs with ≥30% overlap: {len(high_overlap):,}") ``` #### `all_join_size_results_est.csv` Estimated join sizes for databases (cardinality estimation). **Columns**: - `db_id` (int): Database ID - `all_join_size` (float): Estimated size of full outer join across all tables **Loading**: ```python import pandas as pd join_sizes = pd.read_csv('all_join_size_results_est.csv') # Analyze join complexity print(f"Mean join size: {join_sizes['all_join_size'].mean():.2f}") print(f"Max join size: {join_sizes['all_join_size'].max():.2f}") # Large databases (complex joins) large_dbs = join_sizes[join_sizes['all_join_size'] > 1000] ``` ### 3. Node Files (Database Properties) #### `node_structural_properties.csv` Comprehensive structural properties for each database schema. **Columns**: - `db_id` (int): Database ID - `num_tables` (int): Number of tables in the database - `num_columns` (int): Total number of columns across all tables - `foreign_key_density` (float): Ratio of foreign keys to possible relationships - `avg_table_connectivity` (float): Average number of connections per table - `median_table_connectivity` (float): Median connections per table - `min_table_connectivity` (float): Minimum connections for any table - `max_table_connectivity` (float): Maximum connections for any table - `data_type_proportions` (str): JSON string with data type distribution - `data_types` (str): JSON string with count of each data type - `wikidata_properties` (int): Number of Wikidata properties used **Loading**: ```python import pandas as pd import json node_props = pd.read_csv('node_structural_properties.csv') # Parse JSON columns node_props['data_type_dist'] = node_props['data_type_proportions'].apply( lambda x: json.loads(x.replace("'", '"')) ) # Analyze database complexity complex_dbs = node_props[node_props['num_tables'] > 10] print(f"Databases with >10 tables: {len(complex_dbs):,}") # Foreign key density analysis print(f"Mean FK density: {node_props['foreign_key_density'].mean():.4f}") ``` **Example row**: ``` db_id: 88880 num_tables: 2 num_columns: 24 foreign_key_density: 0.0833 avg_table_connectivity: 1.5 data_type_proportions: {'string': 0.417, 'wikibase-entityid': 0.583} ``` #### `data_volume.csv` Storage size information for each database. **Columns**: - `db_id` (str/int): Database ID (may have leading zeros) - `volume_bytes` (int): Total data volume in bytes **Loading**: ```python import pandas as pd volumes = pd.read_csv('data_volume.csv') # Convert to more readable units volumes['volume_mb'] = volumes['volume_bytes'] / (1024 * 1024) volumes['volume_gb'] = volumes['volume_bytes'] / (1024 * 1024 * 1024) # Find largest databases top_10 = volumes.nlargest(10, 'volume_bytes') print(top_10[['db_id', 'volume_gb']]) ``` ### 4. Column-Level Statistics #### `column_cardinality.csv` Distinct value counts for all columns. **Columns**: - `db_id` (str/int): Database ID - `table_name` (str): Table name - `column_name` (str): Column name - `n_distinct` (int): Number of distinct values **Loading**: ```python import pandas as pd cardinality = pd.read_csv('column_cardinality.csv') # High cardinality columns (potentially good as keys) high_card = cardinality[cardinality['n_distinct'] > 100] # Analyze cardinality distribution print(f"Mean distinct values: {cardinality['n_distinct'].mean():.2f}") print(f"Median distinct values: {cardinality['n_distinct'].median():.2f}") ``` **Example rows**: ``` db_id table_name column_name n_distinct 6 scholarly_articles article_title 275 6 scholarly_articles article_description 197 6 scholarly_articles pub_med_id 269 ``` #### `column_entropy.csv` Shannon entropy for column value distributions. **Columns**: - `db_id` (str): Database ID (padded format) - `table_name` (str): Table name - `column_name` (str): Column name - `entropy` (float): Shannon entropy value [0.0, ∞) **Loading**: ```python import pandas as pd entropy = pd.read_csv('column_entropy.csv') # High entropy columns (high information content) high_entropy = entropy[entropy['entropy'] > 3.0] # Low entropy columns (low diversity) low_entropy = entropy[entropy['entropy'] < 0.5] # Distribution analysis print(f"Mean entropy: {entropy['entropy'].mean():.3f}") ``` **Example rows**: ``` db_id table_name column_name entropy 00001 descendants_of_john_i full_name 3.322 00001 descendants_of_john_i gender 0.881 00001 descendants_of_john_i father_name 0.000 ``` #### `column_sparsity.csv` Missing value ratios for all columns. **Columns**: - `db_id` (str): Database ID (padded format) - `table_name` (str): Table name - `column_name` (str): Column name - `sparsity` (float): Ratio of missing values [0.0, 1.0] **Loading**: ```python import pandas as pd sparsity = pd.read_csv('column_sparsity.csv') # Dense columns (few missing values) dense = sparsity[sparsity['sparsity'] < 0.1] # Sparse columns (many missing values) sparse = sparsity[sparsity['sparsity'] > 0.5] # Quality assessment print(f"Columns with >50% missing: {len(sparse):,}") print(f"Mean sparsity: {sparsity['sparsity'].mean():.3f}") ``` **Example rows**: ``` db_id table_name column_name sparsity 00009 FamousPencilMoustacheWearers Name 0.000 00009 FamousPencilMoustacheWearers Biography 0.000 00009 FamousPencilMoustacheWearers ViafId 0.222 ``` ### 5. Clustering and Community Files #### `community_assignment_0.94.csv` Community detection results using Louvain algorithm. **Columns**: - `node_id` (int): Database ID - `partition` (int): Community/partition ID **Loading**: ```python import pandas as pd communities = pd.read_csv('community_assignment_0.94.csv') # Analyze community structure community_sizes = communities['partition'].value_counts() print(f"Number of communities: {len(community_sizes)}") print(f"Largest community size: {community_sizes.max()}") # Get databases in a specific community community_1 = communities[communities['partition'] == 1]['node_id'].tolist() ``` **Statistics**: - Total communities: 6,133 - Largest community: 4,825 nodes - Modularity: 0.5366 #### `cluster_assignments_dim2_sz100_msNone.csv` Clustering results from dimensionality reduction (e.g., t-SNE, UMAP). **Columns**: - `db_id` (int): Database ID - `cluster` (int): Cluster ID **Loading**: ```python import pandas as pd clusters = pd.read_csv('cluster_assignments_dim2_sz100_msNone.csv') # Analyze cluster distribution cluster_sizes = clusters['cluster'].value_counts() print(f"Number of clusters: {len(cluster_sizes)}") # Get databases in a specific cluster cluster_9 = clusters[clusters['cluster'] == 9]['db_id'].tolist() ``` ### 6. Analysis Reports #### `analysis_0.94_report.txt` Comprehensive text report of graph analysis at threshold 0.94. **Contents**: - Graph statistics (nodes, edges) - Connected components analysis - Community detection results - Top components and communities by size **Loading**: ```python with open('analysis_0.94_report.txt', 'r') as f: report = f.read() print(report) ``` **Key Metrics**: - Total Nodes: 100,000 - Total Edges: 17,858,194 - Connected Components: 6,109 - Largest Component: 10,703 nodes - Communities: 6,133 - Modularity: 0.5366 ## Usage Examples ### Example 1: Finding Similar Database Pairs ```python import pandas as pd # Load edges with high similarity edges = pd.read_csv('filtered_edges_threshold_0.94.csv') # Find database pairs with similarity > 0.98 high_sim_pairs = edges[edges['similarity'] >= 0.98] print(f"Found {len(high_sim_pairs)} pairs with similarity ≥ 0.98") # Get top 10 most similar pairs top_pairs = edges.nlargest(10, 'similarity') for idx, row in top_pairs.iterrows(): print(f"DB {int(row['src'])} ↔ DB {int(row['tgt'])}: {row['similarity']:.4f}") ``` ### Example 2: Analyzing Database Properties ```python import pandas as pd import json # Load node properties nodes = pd.read_csv('node_structural_properties.csv') # Find complex databases complex_dbs = nodes[ (nodes['num_tables'] > 10) & (nodes['num_columns'] > 100) ] print(f"Complex databases: {len(complex_dbs)}") # Analyze data type distribution for idx, row in complex_dbs.head().iterrows(): db_id = row['db_id'] types = json.loads(row['data_types'].replace("'", '"')) print(f"DB {db_id}: {types}") ``` ### Example 3: Loading and Analyzing the Graph ```python import dgl import torch import pandas as pd # Load DGL graph graphs, _ = dgl.load_graphs('graph_raw_0.94.dgl') graph = graphs[0] # Basic statistics print(f"Nodes: {graph.num_nodes():,}") print(f"Edges: {graph.num_edges():,}") # Analyze degree distribution in_degrees = graph.in_degrees() out_degrees = graph.out_degrees() print(f"Average in-degree: {in_degrees.float().mean():.2f}") print(f"Average out-degree: {out_degrees.float().mean():.2f}") # Find highly connected nodes top_nodes = torch.topk(in_degrees, k=10) print(f"Top 10 most connected databases: {top_nodes.indices.tolist()}") ``` ### Example 4: Federated Learning Pair Selection ```python import pandas as pd # Load edges and structural properties edges = pd.read_csv('filtered_edges_threshold_0.94.csv') edge_props = pd.read_csv('edge_structural_properties_GED_0.94.csv') # Merge data pairs = edges.merge( edge_props, left_on=['src', 'tgt'], right_on=['db_id1', 'db_id2'], how='inner' ) # Select pairs for federated learning # Criteria: high similarity + high column overlap + low GED fl_candidates = pairs[ (pairs['similarity'] >= 0.98) & (pairs['jaccard_columns'] >= 0.4) & (pairs['graph_edit_distance'] <= 3.0) ] print(f"FL candidate pairs: {len(fl_candidates)}") # Sample pairs for experiments sample = fl_candidates.sample(n=100, random_state=42) ``` ### Example 5: Column Statistics Analysis ```python import pandas as pd # Load column-level statistics cardinality = pd.read_csv('column_cardinality.csv') entropy = pd.read_csv('column_entropy.csv') sparsity = pd.read_csv('column_sparsity.csv') # Merge on (db_id, table_name, column_name) merged = cardinality.merge(entropy, on=['db_id', 'table_name', 'column_name']) merged = merged.merge(sparsity, on=['db_id', 'table_name', 'column_name']) # Find high-quality columns for machine learning # Criteria: high cardinality, high entropy, low sparsity quality_columns = merged[ (merged['n_distinct'] > 50) & (merged['entropy'] > 2.0) & (merged['sparsity'] < 0.1) ] print(f"High-quality columns: {len(quality_columns)}") ``` ### Example 6: Community Analysis ```python import pandas as pd # Load community assignments communities = pd.read_csv('community_assignment_0.94.csv') nodes = pd.read_csv('node_structural_properties.csv') # Merge to get properties by community community_props = communities.merge( nodes, left_on='node_id', right_on='db_id' ) # Analyze each community for comm_id in community_props['partition'].unique()[:5]: comm_data = community_props[community_props['partition'] == comm_id] print(f"\nCommunity {comm_id}:") print(f" Size: {len(comm_data)}") print(f" Avg tables: {comm_data['num_tables'].mean():.2f}") print(f" Avg columns: {comm_data['num_columns'].mean():.2f}") ``` ## Applications ### 1. Federated Learning Research Use the similarity graph to identify database pairs for federated learning experiments. The high-similarity pairs (≥0.98) are ideal for horizontal federated learning scenarios. ### 2. Schema Matching Leverage structural properties and similarity metrics for automated schema matching and integration tasks. ### 3. Database Clustering Use embeddings and community detection results to group similar databases for analysis or optimization. ### 4. Data Quality Assessment Column-level statistics (cardinality, entropy, sparsity) enable systematic data quality evaluation across large database collections. ### 5. Graph Neural Networks The DGL graph format is ready for training GNN models for link prediction, node classification, or graph classification tasks. ## Technical Details ### Similarity Computation - **Method**: BGE (BAAI General Embedding) model for semantic embeddings - **Metric**: Cosine similarity - **Thresholds**: Multiple thresholds available (0.6713, 0.94, 0.96) ### Graph Construction - **Nodes**: Database IDs (0 to 99,999) - **Edges**: Database pairs with similarity above threshold - **Edge weights**: Cosine similarity scores - **Format**: DGL binary format for efficient loading ### Community Detection - **Algorithm**: Louvain method - **Modularity**: 0.5366 (indicates well-defined communities) - **Resolution**: Default parameter ### Data Processing Pipeline 1. Schema extraction from Wikidata databases 2. Semantic embedding generation using BGE 3. Similarity computation across all pairs 4. Graph construction and filtering 5. Property extraction and statistical analysis 6. Community detection and clustering ## Data Format Standards ### Database ID Formats - **Integer IDs**: Used in most files (0-99999) - **Padded strings**: Used in some files (e.g., "00000", "00001") - **Conversion**: `str(db_id).zfill(5)` for integer to padded string ### Missing Values - Numerical columns: May contain `NaN` or `-0.0` - String columns: Empty strings or missing entries - Sparsity column: Explicit ratio of missing values ### Data Types - `float32`: Similarity scores, weights, entropy - `float64`: Statistical measures, ratios - `int64`: Counts, IDs - `string`: Names, identifiers ## File Size Information Approximate file sizes: - `graph_raw_0.94.dgl`: ~2.5 GB - `database_embeddings.pt`: ~300 MB - `filtered_edges_threshold_0.94.csv`: ~800 MB - `edge_structural_properties_GED_0.94.csv`: ~400 MB - `node_structural_properties.csv`: ~50 MB - Column statistics CSVs: ~20-50 MB each - Other files: <10 MB each ## Citation If you use this dataset in your research, please cite: ```bibtex @article{wu2025wikidbgraph, title={WikiDBGraph: Large-Scale Database Graph of Wikidata for Collaborative Learning}, author={Wu, Zhaomin and Wang, Ziyang and He, Bingsheng}, journal={arXiv preprint arXiv:2505.16635}, year={2025} } ``` ## License This dataset is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0). ## Acknowledgments This dataset is derived from Wikidata and builds upon the WikiDBGraph system for graph-based database analysis and federated learning. We acknowledge the Wikidata community for providing the underlying data infrastructure.