File size: 4,595 Bytes
4fc3ddf
 
 
 
 
f803c4b
4fc3ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f803c4b
 
 
 
 
 
 
 
 
 
 
 
 
4fc3ddf
f803c4b
 
 
 
4fc3ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import pandas as pd
import datasets

_DESCRIPTION = """\
Multi-source dataset of antibody-mutation interactions including IC50, binding, escape, and affinity measurements.
Also includes antibody synonyms with CDR sequences and epitope information.
"""

_FEATURES = {
    'antibody_name': datasets.Value("string"),
    'antigen_lineage': datasets.Value("string"),
    'target_value': datasets.Value("float"),
    'target_type': datasets.Value("string"),
    'source_name': datasets.Value("string"),
    'source_doi': datasets.Value("string"),
    'assay_name': datasets.Value("string"),
    'pdb_id': datasets.Value("string"),
    'structure_release_date': datasets.Value("string"),
    'structure_resolution': datasets.Value("float"),
    'mutations': datasets.Value("string"),
    'antigen_chain_ids': datasets.Value("string"),
    'antigen_domain': datasets.Value("string"),
    'antigen_residue_indices': datasets.Value("string"),
    'antigen_residue_indices_trimmed': datasets.Value("string"),
    'antigen_host': datasets.Value("string"),
    'antibody_heavy_chain_id': datasets.Value("string"),
    'antibody_light_chain_id': datasets.Value("string"),
    'epitope_residues': datasets.Value("string"),
    'epitope_mutations': datasets.Value("string"),
    'epitope_domain': datasets.Value("string"),
    'epitope_alteration_count': datasets.Value("string"),
    'spike_sequence': datasets.Value("string"),
    'antibody_heavy_chain_sequence': datasets.Value("string"),
    'antibody_light_chain_sequence': datasets.Value("string"),
    'antibody_vh_sequence': datasets.Value("string"),
    'antibody_vl_sequence': datasets.Value("string"),
    'antigen_sequence': datasets.Value("string"),
    'antigen_sequence_trimmed': datasets.Value("string"),
    'antigen_sequence_without_indels': datasets.Value("string"),
    'antigen_sequence_trimmed_without_indels': datasets.Value("string"),
    'antigen_pdb_sequence': datasets.Value("string"),
    'antigen_pdb_sequence_trimmed': datasets.Value("string"),
}

_ANTIBODY_SYNONYMS_FEATURES = {
    'antibody_name': datasets.Value("string"),
    'pdb_id': datasets.Value("string"),
    'antibody_heavy_chain_cdr1': datasets.Value("string"),
    'antibody_heavy_chain_cdr2': datasets.Value("string"),
    'antibody_heavy_chain_cdr3': datasets.Value("string"),
    'antibody_light_chain_cdr1': datasets.Value("string"),
    'antibody_light_chain_cdr2': datasets.Value("string"),
    'antibody_light_chain_cdr3': datasets.Value("string"),
    'epitope_residues': datasets.Value("string"),
    'epitope_domain': datasets.Value("string"),
}

_TABLES = {
    "antibody_synonyms": {
        "file": "antibody_info/antibody_synonyms_with_epitopes.parquet",
        "features": _ANTIBODY_SYNONYMS_FEATURES,
    },
    "drdb": {
        "file": "data/drdb_binding_potency.parquet",
        "features": {
            **_FEATURES,
        }
    },
    "covabdab": {
        "file": "data/covabdab_binding.parquet",
        "features": {
            **{
                **_FEATURES,
                "target_value": datasets.Value("bool"),
            }
        }
    },
    "dms_bloom": {
        "file": "data/dms_bloom_ab_escape.parquet",
        "features": {
            **_FEATURES,
        }
    },
    "dms_cao": {
        "file": "data/dms_cao_ab_escape.parquet",
        "features": {
            **_FEATURES,
        }
    },
    "jian_elisa": {
        "file": "data/jian_elisa_ab_ic50.parquet",
        "features": {
            **_FEATURES,
        }
    },
    "spr": {
        "file": "data/spr_ab_affinity.parquet",
        "features": {
            **_FEATURES,
        }
    }
}

class CovUniBindConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)


class CovUniBind(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        CovUniBindConfig(name=table, description=f"{table} subset") for table in _TABLES
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(_TABLES[self.config.name]["features"]),
        )

    def _split_generators(self, dl_manager):
        file_path = _TABLES[self.config.name]["file"]
        data_path = dl_manager.download_and_extract(file_path)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_path}),
        ]

    def _generate_examples(self, filepath):
        df = pd.read_parquet(filepath)
        for idx, row in df.iterrows():
            yield idx, row.to_dict()