Datasets:
Update readme.md
Browse files
readme.md
CHANGED
|
@@ -1,43 +1,43 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
| 4 |
-
# πΌοΈ DiffSeg30k -- A multi-turn diffusion-editing dataset for localized AIGC detection
|
| 5 |
-
|
| 6 |
-
A dataset for **segmenting diffusion-based edits** β ideal for training and evaluating models that localize edited regions and identify the underlying diffusion model
|
| 7 |
-
|
| 8 |
-
## π Dataset Usage
|
| 9 |
-
- `xxxxxxxx.image.png`: Edited images. Each image may have undergone 1, 2, or 3 editing operations.
|
| 10 |
-
- `xxxxxxxx.mask.png`: The corresponding mask indicating edited regions, where pixel values encode
|
| 11 |
-
|
| 12 |
-
Load images and masks as follows:
|
| 13 |
-
|
| 14 |
-
```python
|
| 15 |
-
from datasets import load_dataset
|
| 16 |
-
dataset = load_dataset("Chaos2629/Diffseg30k", split="train")
|
| 17 |
-
image, mask = dataset[0]['image'], dataset[0]['mask']
|
| 18 |
-
```
|
| 19 |
-
|
| 20 |
-
## π§ Mask Annotation
|
| 21 |
-
|
| 22 |
-
Each mask is a grayscale image (PNG format), where pixel values correspond to a specific editing model. The mapping is as follows:
|
| 23 |
-
|
| 24 |
-
| Mask Value | Editing Model |
|
| 25 |
-
|------------|------------------------------------------------------|
|
| 26 |
-
| 0 | background |
|
| 27 |
-
| 1 | stabilityai/stable-diffusion-2-inpainting |
|
| 28 |
-
| 2 | kolors |
|
| 29 |
-
| 3 | stabilityai/stable-diffusion-3.5-medium |
|
| 30 |
-
| 4 | flux |
|
| 31 |
-
| 5 | diffusers/stable-diffusion-xl-1.0-inpainting-0.1 |
|
| 32 |
-
| 6 | glide |
|
| 33 |
-
| 7 | Tencent-Hunyuan/HunyuanDiT-Diffusers |
|
| 34 |
-
| 8 | kandinsky-community/kandinsky-2-2-decoder-inpaint |
|
| 35 |
-
|
| 36 |
-
## π Notes
|
| 37 |
-
|
| 38 |
-
- Each edited image may be edited **multiple turns**, so the corresponding mask may contain several different **label values** ranging from 0 to 8.
|
| 39 |
-
|
| 40 |
-
## π License
|
| 41 |
-
|
| 42 |
-
Apache-2.0
|
| 43 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
# πΌοΈ DiffSeg30k -- A multi-turn diffusion-editing dataset for localized AIGC detection
|
| 5 |
+
|
| 6 |
+
A dataset for **segmenting diffusion-based edits** β ideal for training and evaluating models that localize edited regions and identify the underlying diffusion model
|
| 7 |
+
|
| 8 |
+
## π Dataset Usage
|
| 9 |
+
- `xxxxxxxx.image.png`: Edited images. Each image may have undergone 1, 2, or 3 editing operations.
|
| 10 |
+
- `xxxxxxxx.mask.png`: The corresponding mask indicating edited regions, where pixel values encode the diffusion model used.
|
| 11 |
+
|
| 12 |
+
Load images and masks as follows:
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
from datasets import load_dataset
|
| 16 |
+
dataset = load_dataset("Chaos2629/Diffseg30k", split="train")
|
| 17 |
+
image, mask = dataset[0]['image'], dataset[0]['mask']
|
| 18 |
+
```
|
| 19 |
+
|
| 20 |
+
## π§ Mask Annotation
|
| 21 |
+
|
| 22 |
+
Each mask is a grayscale image (PNG format), where pixel values correspond to a specific editing model. The mapping is as follows:
|
| 23 |
+
|
| 24 |
+
| Mask Value | Editing Model |
|
| 25 |
+
|------------|------------------------------------------------------|
|
| 26 |
+
| 0 | background |
|
| 27 |
+
| 1 | stabilityai/stable-diffusion-2-inpainting |
|
| 28 |
+
| 2 | kolors |
|
| 29 |
+
| 3 | stabilityai/stable-diffusion-3.5-medium |
|
| 30 |
+
| 4 | flux |
|
| 31 |
+
| 5 | diffusers/stable-diffusion-xl-1.0-inpainting-0.1 |
|
| 32 |
+
| 6 | glide |
|
| 33 |
+
| 7 | Tencent-Hunyuan/HunyuanDiT-Diffusers |
|
| 34 |
+
| 8 | kandinsky-community/kandinsky-2-2-decoder-inpaint |
|
| 35 |
+
|
| 36 |
+
## π Notes
|
| 37 |
+
|
| 38 |
+
- Each edited image may be edited **multiple turns**, so the corresponding mask may contain several different **label values** ranging from 0 to 8.
|
| 39 |
+
|
| 40 |
+
## π License
|
| 41 |
+
|
| 42 |
+
Apache-2.0
|
| 43 |
+
|