Datasets:
Create README
Browse files
README.md
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- object-detection
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
pretty_name: Real Time Pothole Detection System Training Dataset
|
| 8 |
+
size_categories:
|
| 9 |
+
- n<1K
|
| 10 |
+
tags:
|
| 11 |
+
- Yolo
|
| 12 |
+
- AI/ML
|
| 13 |
+
- Pothole
|
| 14 |
+
- Ultralytics
|
| 15 |
+
- Object Detection
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Real Time Pothole Detection System Training Dataset & Model Files
|
| 19 |
+
|
| 20 |
+
## Model Files
|
| 21 |
+
|
| 22 |
+
**Primary model:** `pothole-detector.pt` — this is the actual pre-trained YOLOv10b model used for this project.
|
| 23 |
+
|
| 24 |
+
You can download it directly from the Hugging Face Hub:
|
| 25 |
+
|
| 26 |
+
- **Direct download link:** [pothole-detector.pt](https://huggingface.co/datasets/Anshulgada/RT-PDS/resolve/main/pothole-detector.pt)
|
| 27 |
+
|
| 28 |
+
- **Python snippet:**
|
| 29 |
+
```python
|
| 30 |
+
from huggingface_hub import hf_hub_download
|
| 31 |
+
|
| 32 |
+
model_path = hf_hub_download(
|
| 33 |
+
repo_id="Anshulgada/RT-PDS",
|
| 34 |
+
filename="pothole-detector.pt"
|
| 35 |
+
)
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
## Other Available Ultralytics Variants
|
| 41 |
+
|
| 42 |
+
| Model | Description |
|
| 43 |
+
| ----------- | ------------------------------ |
|
| 44 |
+
| yolov10n.pt | Nano model, smallest & fastest |
|
| 45 |
+
| yolov10s.pt | Small model |
|
| 46 |
+
| yolov10m.pt | Medium model |
|
| 47 |
+
| yolov10b.pt | Base model |
|
| 48 |
+
| yolov10l.pt | Large model |
|
| 49 |
+
| yolov10x.pt | Extra large, highest accuracy |
|
| 50 |
+
|
| 51 |
+
By default, these Ultralytics weights are available from:
|
| 52 |
+
|
| 53 |
+
👉 [https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov10{variant-name\[n,s,m,b,l,x\]}.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov10b.pt)
|
| 54 |
+
|
| 55 |
+
A backup of these models may also be hosted on Hugging Face Hub.
|
| 56 |
+
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
## Dataset Structure
|
| 60 |
+
|
| 61 |
+
The dataset follows the standard **YOLO format** with separate directories for training, validation, and testing.
|
| 62 |
+
Each split contains both **images/** and **labels/** subdirectories with matching filenames.
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
Yolo/
|
| 66 |
+
├── Inference Images/ # Example images for quick testing
|
| 67 |
+
└── Datasets/
|
| 68 |
+
├── train/
|
| 69 |
+
│ ├── images/ # ~38k training images
|
| 70 |
+
│ └── labels/ # YOLO-format labels
|
| 71 |
+
├── valid/
|
| 72 |
+
│ ├── images/ # 6k validation images
|
| 73 |
+
│ └── labels/
|
| 74 |
+
└── test/
|
| 75 |
+
├── images/ # 10k test images
|
| 76 |
+
└── labels/
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
You can download it directly from the Hugging Face Hub:
|
| 80 |
+
|
| 81 |
+
- **Direct download link:** [Yolo.zip](https://huggingface.co/datasets/Anshulgada/RT-PDS/resolve/main/Yolo.zip)
|
| 82 |
+
|
| 83 |
+
- **Python snippet:**
|
| 84 |
+
```python
|
| 85 |
+
from huggingface_hub import hf_hub_download
|
| 86 |
+
|
| 87 |
+
# Download the zipped YOLO dataset
|
| 88 |
+
dataset_path = hf_hub_download(
|
| 89 |
+
repo_id="Anshulgada/RT-PDS",
|
| 90 |
+
filename="Yolo.zip",
|
| 91 |
+
repo_type="dataset"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
print("Dataset downloaded to:", dataset_path)
|
| 95 |
+
```
|