Anshulgada commited on
Commit
8939036
·
verified ·
1 Parent(s): 486f1a0

Create README

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - object-detection
5
+ language:
6
+ - en
7
+ pretty_name: Real Time Pothole Detection System Training Dataset
8
+ size_categories:
9
+ - n<1K
10
+ tags:
11
+ - Yolo
12
+ - AI/ML
13
+ - Pothole
14
+ - Ultralytics
15
+ - Object Detection
16
+ ---
17
+
18
+ # Real Time Pothole Detection System Training Dataset & Model Files
19
+
20
+ ## Model Files
21
+
22
+ **Primary model:** `pothole-detector.pt` — this is the actual pre-trained YOLOv10b model used for this project.
23
+
24
+ You can download it directly from the Hugging Face Hub:
25
+
26
+ - **Direct download link:** [pothole-detector.pt](https://huggingface.co/datasets/Anshulgada/RT-PDS/resolve/main/pothole-detector.pt)
27
+
28
+ - **Python snippet:**
29
+ ```python
30
+ from huggingface_hub import hf_hub_download
31
+
32
+ model_path = hf_hub_download(
33
+ repo_id="Anshulgada/RT-PDS",
34
+ filename="pothole-detector.pt"
35
+ )
36
+ ```
37
+
38
+ ---
39
+
40
+ ## Other Available Ultralytics Variants
41
+
42
+ | Model | Description |
43
+ | ----------- | ------------------------------ |
44
+ | yolov10n.pt | Nano model, smallest & fastest |
45
+ | yolov10s.pt | Small model |
46
+ | yolov10m.pt | Medium model |
47
+ | yolov10b.pt | Base model |
48
+ | yolov10l.pt | Large model |
49
+ | yolov10x.pt | Extra large, highest accuracy |
50
+
51
+ By default, these Ultralytics weights are available from:
52
+
53
+ 👉 [https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov10{variant-name\[n,s,m,b,l,x\]}.pt](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov10b.pt)
54
+
55
+ A backup of these models may also be hosted on Hugging Face Hub.
56
+
57
+ ---
58
+
59
+ ## Dataset Structure
60
+
61
+ The dataset follows the standard **YOLO format** with separate directories for training, validation, and testing.
62
+ Each split contains both **images/** and **labels/** subdirectories with matching filenames.
63
+
64
+ ```
65
+ Yolo/
66
+ ├── Inference Images/ # Example images for quick testing
67
+ └── Datasets/
68
+ ├── train/
69
+ │ ├── images/ # ~38k training images
70
+ │ └── labels/ # YOLO-format labels
71
+ ├── valid/
72
+ │ ├── images/ # 6k validation images
73
+ │ └── labels/
74
+ └── test/
75
+ ├── images/ # 10k test images
76
+ └── labels/
77
+ ```
78
+
79
+ You can download it directly from the Hugging Face Hub:
80
+
81
+ - **Direct download link:** [Yolo.zip](https://huggingface.co/datasets/Anshulgada/RT-PDS/resolve/main/Yolo.zip)
82
+
83
+ - **Python snippet:**
84
+ ```python
85
+ from huggingface_hub import hf_hub_download
86
+
87
+ # Download the zipped YOLO dataset
88
+ dataset_path = hf_hub_download(
89
+ repo_id="Anshulgada/RT-PDS",
90
+ filename="Yolo.zip",
91
+ repo_type="dataset"
92
+ )
93
+
94
+ print("Dataset downloaded to:", dataset_path)
95
+ ```