File size: 35,491 Bytes
83685eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
# SPDX-FileCopyrightText: 2024-2025 ModelCloud.ai
# SPDX-FileCopyrightText: 2024-2025 [email protected]
# SPDX-License-Identifier: Apache-2.0
# Contact: [email protected], x.com/qubitium
"""PyTorch implementation of the MiniMax M2 architecture for Hugging Face Transformers."""
from __future__ import annotations
import copy
import time
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, repeat_kv, rotate_half
from .configuration_minimax_m2 import MiniMaxM2Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MiniMaxM2Config"
_CHECKPOINT_FOR_DOC = "MiniMaxAI/MiniMax-M2"
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, Tuple[torch.Tensor, ...]],
num_experts: int,
top_k: int,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if gate_logits is None:
return torch.tensor(0.0)
if isinstance(gate_logits, torch.Tensor):
logits = gate_logits
else:
logits = torch.cat([layer_gate.to(gate_logits[0].device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.softmax(logits, dim=-1, dtype=torch.float32)
_, selected = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected, num_experts)
if attention_mask is None:
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, seq_len = attention_mask.shape
num_layers = logits.shape[0] // (batch_size * seq_len)
expanded_mask = (
attention_mask[None, :, :, None, None]
.expand(num_layers, batch_size, seq_len, top_k, num_experts)
.reshape(-1, top_k, num_experts)
.to(logits.device)
)
tokens_per_expert = torch.sum(expert_mask.float() * expanded_mask, dim=0) / torch.sum(expanded_mask, dim=0)
router_mask = (
attention_mask[None, :, :, None]
.expand(num_layers, batch_size, seq_len, num_experts)
.reshape(-1, num_experts)
.to(logits.device)
)
router_prob_per_expert = torch.sum(routing_weights * router_mask, dim=0) / torch.sum(router_mask, dim=0)
loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return loss * num_experts
def apply_rotary_pos_emb_partial(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
rotary_dim: int,
unsqueeze_dim: int = 2,
) -> Tuple[torch.Tensor, torch.Tensor]:
cos = cos.unsqueeze(unsqueeze_dim)[..., :rotary_dim]
sin = sin.unsqueeze(unsqueeze_dim)[..., :rotary_dim]
q_rot = q[..., :rotary_dim]
k_rot = k[..., :rotary_dim]
q_rot = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_rot = (k_rot * cos) + (rotate_half(k_rot) * sin)
q = torch.cat((q_rot, q[..., rotary_dim:]), dim=-1)
k = torch.cat((k_rot, k[..., rotary_dim:]), dim=-1)
return q, k
class MiniMaxM2RMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return (self.weight * hidden_states).to(input_dtype)
class MiniMaxM2MLP(nn.Module):
def __init__(self, config: MiniMaxM2Config) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate = self.act_fn(self.w1(hidden_states))
up = self.w3(hidden_states)
gate.mul_(up)
del up
return self.w2(gate)
class MiniMaxM2SparseMoeBlock(nn.Module):
def __init__(self, config: MiniMaxM2Config) -> None:
super().__init__()
self.hidden_dim = config.hidden_size
self.experts = nn.ModuleList([MiniMaxM2MLP(config) for _ in range(config.num_local_experts)])
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
self.jitter_noise = config.router_jitter_noise
self.use_routing_bias = config.use_routing_bias
self.scoring_func = getattr(config, "scoring_func", "softmax")
self.use_grouped_topk = getattr(config, "use_grouped_topk", False)
self.num_expert_group = getattr(config, "num_expert_group", None)
self.topk_group = getattr(config, "topk_group", None)
self.routed_scaling_factor = getattr(config, "routed_scaling_factor", 1.0)
if self.use_grouped_topk:
if self.num_expert_group is None or self.num_expert_group <= 0:
self.num_expert_group = 1
if self.topk_group is None or self.topk_group <= 0:
self.topk_group = min(self.num_expert_group, self.top_k)
else:
self.num_expert_group = 1
self.topk_group = 1
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
if self.use_routing_bias:
self.e_score_correction_bias = nn.Parameter(torch.zeros(self.num_experts, dtype=torch.float32))
else:
self.register_parameter("e_score_correction_bias", None)
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, seq_len, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
noise = torch.empty_like(hidden_states).uniform_(
1.0 - self.jitter_noise,
1.0 + self.jitter_noise,
)
hidden_states.mul_(noise)
del noise
hidden_states = hidden_states.view(-1, hidden_dim)
gate_dtype = self.gate.weight.dtype
router_logits = self.gate(hidden_states.to(gate_dtype)).to(torch.float32)
if self.e_score_correction_bias is not None:
# Bias is applied after scoring (see vLLM/SGLang implementations).
correction_bias = self.e_score_correction_bias.to(router_logits.device, router_logits.dtype)
else:
correction_bias = None
if self.scoring_func == "sigmoid":
scores = torch.sigmoid(router_logits)
elif self.scoring_func == "softmax":
scores = torch.softmax(router_logits, dim=-1)
else:
raise ValueError(f"Unsupported scoring function: {self.scoring_func}")
if correction_bias is not None:
original_scores = scores
scores.add_(correction_bias)
else:
original_scores = scores
topk_scores: torch.Tensor
if self.use_grouped_topk and self.num_expert_group > 1:
experts_per_group = scores.size(-1) // self.num_expert_group
scores_grouped = scores.view(scores.size(0), self.num_expert_group, experts_per_group)
if correction_bias is not None:
topk_in_group = min(2, experts_per_group)
if topk_in_group > 0:
group_scores = scores_grouped.topk(topk_in_group, dim=-1)[0].sum(dim=-1)
else:
group_scores = torch.zeros_like(scores_grouped[..., 0])
else:
group_scores = scores_grouped.max(dim=-1).values
group_mask = torch.zeros_like(group_scores)
selected_groups = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=True).indices
group_mask.scatter_(1, selected_groups, 1.0)
mask = group_mask.unsqueeze(-1).expand(-1, -1, experts_per_group).reshape(scores.size())
masked_scores = scores.masked_fill(mask == 0, float("-inf"))
topk_scores, selected_experts = torch.topk(masked_scores, self.top_k, dim=-1, sorted=True)
else:
topk_scores, selected_experts = torch.topk(scores, self.top_k, dim=-1, sorted=True)
if correction_bias is not None:
routing_weights = original_scores.gather(1, selected_experts)
else:
routing_weights = topk_scores
del scores, original_scores, topk_scores
routing_weights.div_(routing_weights.sum(dim=-1, keepdim=True).clamp(min=1e-12))
if self.routed_scaling_factor != 1.0:
routing_weights.mul_(self.routed_scaling_factor)
routing_weights = routing_weights.to(hidden_states.dtype)
selected_experts = selected_experts.to(torch.long)
final_hidden_states = torch.zeros_like(hidden_states)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
del selected_experts
expert_hit = torch.nonzero(expert_mask.sum(dim=(-1, -2)) > 0, as_tuple=False).flatten()
# To further reduce memory, process tokens routed to each expert in chunks
# instead of all at once. A chunk size of 1024 is a reasonable default.
EXPERT_CHUNK_SIZE = 1024
for expert_idx in expert_hit.tolist():
expert_layer = self.experts[expert_idx]
idx_full, top_x_full = torch.where(expert_mask[expert_idx].squeeze(0))
for i in range(0, top_x_full.size(0), EXPERT_CHUNK_SIZE):
top_x = top_x_full[i : i + EXPERT_CHUNK_SIZE]
idx = idx_full[i : i + EXPERT_CHUNK_SIZE]
token_states = hidden_states.index_select(0, top_x)
expert_output = expert_layer(token_states)
weights = routing_weights[top_x, idx].unsqueeze(-1)
expert_output.mul_(weights)
final_hidden_states.index_add_(0, top_x, expert_output.to(final_hidden_states.dtype))
del expert_output, token_states, idx, top_x, weights
del idx_full, top_x_full
del hidden_states, routing_weights, expert_mask, expert_hit
final_hidden_states = final_hidden_states.view(batch_size, seq_len, hidden_dim)
return final_hidden_states, router_logits
class MiniMaxM2Attention(nn.Module):
def __init__(self, config: MiniMaxM2Config, layer_idx: int) -> None:
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = config.head_dim
self.num_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // max(1, self.num_key_value_heads)
self.rotary_dim = config.rotary_dim
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
max_model_len = getattr(config, "max_model_len", None)
if max_model_len is not None:
max_position_embeddings = max(max_position_embeddings, max_model_len)
attn_window_size = getattr(config, "attn_window_size", None)
if isinstance(attn_window_size, list):
sliding_window = attn_window_size[layer_idx]
else:
sliding_window = attn_window_size
if sliding_window is not None and sliding_window <= 0:
sliding_window = None
self.sliding_window = sliding_window
swa_rope_theta = getattr(config, "swa_rope_theta", -1.0)
rope_theta = config.rope_theta
if self.sliding_window is not None and swa_rope_theta > 0:
rope_theta = swa_rope_theta
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
self.use_qk_norm = config.use_qk_norm
if self.use_qk_norm:
self.q_norm = MiniMaxM2RMSNorm(self.num_heads * self.head_dim, eps=config.rms_norm_eps)
self.k_norm = MiniMaxM2RMSNorm(self.num_key_value_heads * self.head_dim, eps=config.rms_norm_eps)
rope_config = copy.deepcopy(config)
rope_config.hidden_size = config.hidden_size
rope_config.num_attention_heads = config.num_attention_heads
rope_config.partial_rotary_factor = float(config.rotary_dim) / float(self.head_dim)
rope_config.rope_theta = rope_theta
rope_config.max_position_embeddings = max_position_embeddings
self.rotary_emb = LlamaRotaryEmbedding(rope_config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
# projections
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
del hidden_states
# optional QK normalization
if self.use_qk_norm:
q_flat = query_states.transpose(1, 2).reshape(bsz * q_len, -1)
k_flat = key_states.transpose(1, 2).reshape(bsz * q_len, -1)
q_flat = self.q_norm(q_flat)
k_flat = self.k_norm(k_flat)
query_states = q_flat.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = k_flat.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# rotary embeddings
if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb_partial(
query_states.transpose(1, 2), key_states.transpose(1, 2), cos, sin, self.rotary_dim
)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
# handle cache
if past_key_values is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
query_dtype = query_states.dtype
key_len = key_states.shape[-2]
# precompute sliding-window mask
window_mask = None
if self.sliding_window is not None and past_key_values is None:
q_pos = torch.arange(q_len, device=device).view(1, 1, q_len, 1)
k_pos = torch.arange(key_len, device=device).view(1, 1, 1, key_len)
wm = k_pos < (q_pos - self.sliding_window)
if wm.any():
window_mask = wm.squeeze(1) # (1, q_len, key_len)
del q_pos, k_pos, wm
attn_output_parts = []
attn_weights_list = [] if output_attentions else None
for h in range(self.num_heads):
# (bsz, q_len, key_len)
q = query_states[:, h, :, :]
k = key_states[:, h, :, :]
v = value_states[:, h, :, :]
# Chunked attention computation to reduce peak memory usage
out_parts = []
attn_parts = [] if output_attentions else None
# A smaller chunk size reduces memory but may be slightly slower
chunk_size = 1024
for i in range(0, q.size(1), chunk_size):
q_chunk = q[:, i:i + chunk_size, :]
# attn_chunk has shape (bsz, chunk_size, key_len)
attn_chunk = torch.matmul(q_chunk, k.transpose(-2, -1))
attn_chunk.mul_(self.scaling)
# Apply masks to the chunk
if attention_mask is not None:
attn_chunk.add_(attention_mask.squeeze(1)[:, i:i + chunk_size, :])
if window_mask is not None:
attn_chunk.masked_fill_(window_mask[:, i:i + chunk_size, :], float("-inf"))
attn_chunk = torch.softmax(attn_chunk, dim=-1, dtype=torch.float32).to(query_dtype)
if self.training and self.attention_dropout > 0:
attn_chunk = F.dropout(attn_chunk, p=self.attention_dropout, training=True)
if output_attentions:
attn_parts.append(attn_chunk)
# output_chunk has shape (bsz, chunk_size, head_dim)
out_chunk = torch.matmul(attn_chunk, v)
out_parts.append(out_chunk)
del q_chunk, attn_chunk, out_chunk
out = torch.cat(out_parts, dim=1)
attn_output_parts.append(out)
if output_attentions:
attn = torch.cat(attn_parts, dim=1)
attn_weights_list.append(attn)
del attn, attn_parts
del q, k, v, out, out_parts
attn_output = torch.stack(attn_output_parts, dim=1)
del attn_output_parts, query_states, key_states, value_states
attn_weights = torch.stack(attn_weights_list, dim=1) if output_attentions else None
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MiniMaxM2LogitsProcessor(nn.Module):
def __init__(self, config: MiniMaxM2Config) -> None:
super().__init__()
self.scale = getattr(config, "logits_scale", 1.0)
def forward(self, lm_head: nn.Module, hidden_states: torch.Tensor) -> torch.Tensor:
logits = lm_head(hidden_states)
if self.scale != 1.0:
logits = logits * self.scale
return logits
class MiniMaxM2DecoderLayer(nn.Module):
def __init__(self, config: MiniMaxM2Config, layer_idx: int) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MiniMaxM2Attention(config, layer_idx)
self.block_sparse_moe = MiniMaxM2SparseMoeBlock(config)
self.input_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_attentions: bool = False,
residual: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], torch.Tensor]:
residual_input = hidden_states if residual is None else residual
hidden_states = self.input_layernorm(hidden_states)
attn_output, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
output_attentions=output_attentions,
)
hidden_states = residual_input + attn_output
residual_post_attn = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
moe_output, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual_post_attn + moe_output
return hidden_states, hidden_states, router_logits, attn_weights
class MiniMaxM2PreTrainedModel(PreTrainedModel):
config_class = MiniMaxM2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MiniMaxM2DecoderLayer"]
_supports_flash_attn = False
_supports_sdpa = False
_supports_attention_backend = False
def _init_weights(self, module: nn.Module) -> None:
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _remap_qkv_weights(self, state_dict):
num_q = self.config.num_attention_heads * self.config.head_dim
num_kv = self.config.num_key_value_heads * self.config.head_dim
for layer_idx in range(self.config.num_hidden_layers):
prefix = f"model.layers.{layer_idx}.self_attn"
weight_key = f"{prefix}.qkv_proj.weight"
if weight_key in state_dict:
qkv_weight = state_dict.pop(weight_key)
q_weight, k_weight, v_weight = qkv_weight.split([num_q, num_kv, num_kv], dim=0)
state_dict.setdefault(f"{prefix}.q_proj.weight", q_weight)
state_dict.setdefault(f"{prefix}.k_proj.weight", k_weight)
state_dict.setdefault(f"{prefix}.v_proj.weight", v_weight)
def load_state_dict(self, state_dict, strict: bool = True):
if not isinstance(state_dict, dict):
raise TypeError(f"Expected state_dict to be dict, got {type(state_dict)}")
filtered_state_dict = {}
drop_suffixes = ("weight_scale_inv", "weight_scale", "input_scale", "scales", "amax")
for key, value in state_dict.items():
if key.endswith(drop_suffixes) or "fp8" in key:
continue
filtered_state_dict[key] = value
self._remap_qkv_weights(filtered_state_dict)
if logger.isEnabledFor(logging.INFO):
logger.info(
"MiniMaxM2: loading %d tensors (filtered from %d original).",
len(filtered_state_dict),
len(state_dict),
)
load_start = time.perf_counter()
result = super().load_state_dict(filtered_state_dict, strict=strict)
load_elapsed = time.perf_counter() - load_start
if logger.isEnabledFor(logging.INFO):
logger.info("MiniMaxM2: state_dict load finished in %.2f seconds.", load_elapsed)
return result
class MiniMaxM2Model(MiniMaxM2PreTrainedModel):
def __init__(self, config: MiniMaxM2Config) -> None:
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MiniMaxM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = MiniMaxM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embed_tokens
def set_input_embeddings(self, value: nn.Module) -> None:
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MoeModelOutputWithPast, Tuple]:
if (input_ids is None) == (inputs_embeds is None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds.")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache(config=self.config)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
if self.config.sliding_window is not None:
causal_mask = create_sliding_window_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
else:
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_router_logits = () if output_router_logits else None
residual = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=None,
output_attentions=output_attentions,
residual=residual,
)
hidden_states, residual, router_logits, attn_weights = layer_outputs
if output_router_logits:
all_router_logits = all_router_logits + (router_logits,)
if output_attentions:
all_attentions = all_attentions + (attn_weights,)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
outputs = (hidden_states, past_key_values)
if output_hidden_states:
outputs += (all_hidden_states,)
if output_attentions:
outputs += (all_attentions,)
if output_router_logits:
outputs += (all_router_logits,)
return outputs
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attentions,
router_logits=all_router_logits,
)
class MiniMaxM2ForCausalLM(MiniMaxM2PreTrainedModel, GenerationMixin):
def __init__(self, config: MiniMaxM2Config) -> None:
super().__init__(config)
self.model = MiniMaxM2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
self.logits_processor = MiniMaxM2LogitsProcessor(config)
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
def set_input_embeddings(self, value: nn.Module) -> None:
self.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
self.lm_head = new_embeddings
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
):
if past_key_values is not None:
input_ids = input_ids[:, -1:]
if attention_mask is not None:
attention_mask = attention_mask[:, -past_key_values.get_seq_length() - 1 :]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"inputs_embeds": inputs_embeds,
}
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[MoeCausalLMOutputWithPast, Tuple]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
model_outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=True,
)
hidden_states = model_outputs.last_hidden_state
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) and logits_to_keep > 0 else slice(None)
logits = self.logits_processor(self.lm_head, hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.vocab_size), shift_labels.view(-1))
aux_loss = None
if output_router_logits and model_outputs.router_logits is not None:
aux_loss = load_balancing_loss_func(
model_outputs.router_logits,
num_experts=self.num_experts,
top_k=self.num_experts_per_tok,
attention_mask=attention_mask,
)
if loss is not None:
loss = loss + self.router_aux_loss_coef * aux_loss.to(loss.device)
if not return_dict:
output = (logits,) + (model_outputs.past_key_values,)
if output_hidden_states:
output += (model_outputs.hidden_states,)
if output_attentions:
output += (model_outputs.attentions,)
if output_router_logits:
output += (model_outputs.router_logits,)
return ((loss,) + output) if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=model_outputs.past_key_values,
hidden_states=model_outputs.hidden_states,
attentions=model_outputs.attentions,
router_logits=model_outputs.router_logits,
)
# -----------------------------------------------------------------------------
# Backward compatibility aliases
# -----------------------------------------------------------------------------
MiniMaxRMSNorm = MiniMaxM2RMSNorm
MiniMaxSparseMoeBlock = MiniMaxM2SparseMoeBlock
MiniMaxAttention = MiniMaxM2Attention
MiniMaxDecoderLayer = MiniMaxM2DecoderLayer
MiniMaxMLP = MiniMaxM2MLP
MiniMaxPreTrainedModel = MiniMaxM2PreTrainedModel
MiniMaxModel = MiniMaxM2Model
class MiniMaxForCausalLM(MiniMaxM2ForCausalLM):
"""Alias for compatibility with checkpoints exporting MiniMaxForCausalLM."""
__all__ = [
"MiniMaxM2RMSNorm",
"MiniMaxM2SparseMoeBlock",
"MiniMaxM2Attention",
"MiniMaxM2DecoderLayer",
"MiniMaxM2Model",
"MiniMaxM2ForCausalLM",
"MiniMaxM2PreTrainedModel",
"MiniMaxRMSNorm",
"MiniMaxSparseMoeBlock",
"MiniMaxAttention",
"MiniMaxDecoderLayer",
"MiniMaxPreTrainedModel",
"MiniMaxModel",
"MiniMaxMLP",
"MiniMaxForCausalLM",
]
|