File size: 2,342 Bytes
12c07c1 732b52b 7e8a1f7 732b52b 7e8a1f7 732b52b 12c07c1 732b52b 13325f2 77f4476 10a8215 7e8a1f7 12c07c1 7e8a1f7 12c07c1 7e8a1f7 12c07c1 7e8a1f7 7469b9e 12c07c1 7469b9e 447cad6 12c07c1 7469b9e 12c07c1 7469b9e 9d8695e 12c07c1 9d8695e 7e8a1f7 9d8695e 7e8a1f7 9d8695e 7e8a1f7 9d8695e 7e8a1f7 12c07c1 b2f5a2a 12c07c1 b2f5a2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
datasets:
- mteb/banking77
language:
- en
pipeline_tag: text-classification
library_name: sentence-transformers
tags:
- mteb
- text
- transformers
- text-embeddings-inference
- sparse-encoder
- sparse
- csr
model-index:
- name: CSR
results:
- dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
split: test
metrics:
- type: accuracy
value: 0.899545
- type: f1
value: 0.899018
- type: f1_weighted
value: 0.899018
- type: main_score
value: 0.899545
task:
type: Classification
base_model:
- nvidia/NV-Embed-v2
---
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [Github](https://github.com/neilwen987/CSR_Adaptive_Rep).
## Usage
📌 **Tip**: For NV-Embed-V2, using Transformers versions **later** than 4.47.0 may lead to performance degradation, as ``model_type=bidir_mistral`` in ``config.json`` is no longer supported.
We recommend using ``Transformers 4.47.0.``
### Sentence Transformers Usage
You can evaluate this model loaded by Sentence Transformers with the following code snippet:
```python
import mteb
from sentence_transformers import SparseEncoder
model = SparseEncoder(
"Y-Research-Group/CSR-NV_Embed_v2-Classification-Banking77",
trust_remote_code=True
)
model.prompts = {
"Banking77Classification": "Instruct: Given a online banking query, find the corresponding intents\nQuery:"
}
task = mteb.get_tasks(tasks=["Banking77Classification"])
evaluation = mteb.MTEB(tasks=task)
evaluation.run(
model,
eval_splits=["test"],
output_folder="./results/Banking77Classification",
show_progress_bar=True
encode_kwargs={"convert_to_sparse_tensor": False, "batch_size": 8}
) # MTEB don't support sparse tensors yet, so we need to convert to dense tensors
```
## Citation
```bibtex
@inproceedings{wenbeyond,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Wen, Tiansheng and Wang, Yifei and Zeng, Zequn and Peng, Zhong and Su, Yudi and Liu, Xinyang and Chen, Bo and Liu, Hongwei and Jegelka, Stefanie and You, Chenyu},
booktitle={Forty-second International Conference on Machine Learning}
}
``` |