File size: 8,580 Bytes
54c5666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# Contributing to ULTRATHINK
Thank you for your interest in contributing to ULTRATHINK! This document provides guidelines and information for contributors.
## π€ How to Contribute
### Reporting Issues
Before creating an issue, please:
1. **Search existing issues** to avoid duplicates
2. **Use the issue templates** when available
3. **Provide detailed information** including:
- Python version and OS
- PyTorch version
- Full error traceback
- Steps to reproduce
- Expected vs actual behavior
### Suggesting Features
We welcome feature suggestions! Please:
1. **Check existing feature requests** first
2. **Describe the use case** and motivation
3. **Provide implementation ideas** if possible
4. **Consider backwards compatibility**
### Pull Requests
#### Before You Start
1. **Fork the repository** and create a feature branch
2. **Check existing PRs** to avoid duplicate work
3. **Discuss major changes** in an issue first
#### Development Setup
```bash
# Clone your fork
git clone https://github.com/yourusername/ultrathink.git
cd ultrathink
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
# Install in development mode
pip install -e .
pip install -r requirements.txt
# Install development tools
pip install pre-commit pytest pytest-cov black flake8 mypy
# Setup pre-commit hooks
pre-commit install
```
#### Code Standards
We maintain high code quality standards:
**Code Formatting**
```bash
# Format code with Black
black src/ tests/ scripts/
# Check formatting
black --check src/ tests/ scripts/
```
**Linting**
```bash
# Run flake8
flake8 src/ tests/ scripts/
# Run mypy for type checking
mypy src/
```
**Testing**
```bash
# Run all tests
python -m pytest tests/
# Run with coverage
python -m pytest tests/ --cov=src --cov-report=html
# Run smoke test
python -m tests.smoke_test
```
#### Code Style Guidelines
1. **Follow PEP 8** with Black formatting
2. **Use type hints** for all functions and methods
3. **Write docstrings** for public APIs (Google style)
4. **Keep functions focused** and reasonably sized
5. **Use meaningful variable names**
6. **Add comments for complex logic**
Example:
```python
def train_model(
model: torch.nn.Module,
dataloader: DataLoader,
optimizer: torch.optim.Optimizer,
device: torch.device,
epochs: int = 10
) -> Dict[str, float]:
"""Train a PyTorch model.
Args:
model: The model to train
dataloader: Training data loader
optimizer: Optimizer for training
device: Device to train on
epochs: Number of training epochs
Returns:
Dictionary containing training metrics
Raises:
ValueError: If epochs is not positive
"""
if epochs <= 0:
raise ValueError("Epochs must be positive")
# Training implementation...
return {"loss": final_loss, "accuracy": final_acc}
```
#### Commit Guidelines
**Commit Message Format**
```
<type>(<scope>): <description>
[optional body]
[optional footer]
```
**Types:**
- `feat`: New feature
- `fix`: Bug fix
- `docs`: Documentation changes
- `style`: Code style changes (formatting, etc.)
- `refactor`: Code refactoring
- `test`: Adding or updating tests
- `chore`: Maintenance tasks
**Examples:**
```
feat(models): add flash attention support
fix(training): resolve gradient accumulation bug
docs(readme): update installation instructions
test(models): add unit tests for MoE routing
```
#### Pull Request Process
1. **Create a feature branch** from `main`
```bash
git checkout -b feature/your-feature-name
```
2. **Make your changes** following the guidelines above
3. **Write or update tests** for your changes
4. **Update documentation** if needed
5. **Run the full test suite**
```bash
python -m pytest tests/
python -m tests.smoke_test
```
6. **Run pre-commit checks**
```bash
pre-commit run --all-files
```
7. **Push to your fork** and create a pull request
8. **Fill out the PR template** completely
9. **Respond to review feedback** promptly
#### PR Review Process
- All PRs require at least one review
- Automated checks must pass
- Documentation must be updated for user-facing changes
- Breaking changes require discussion and migration guide
## ποΈ Architecture Guidelines
### Adding New Models
When adding new model components:
1. **Follow the existing patterns** in `src/models/`
2. **Inherit from appropriate base classes**
3. **Add comprehensive docstrings**
4. **Include configuration classes**
5. **Add unit tests**
6. **Update integration tests**
### Adding New Training Features
For training enhancements:
1. **Consider backwards compatibility**
2. **Add configuration options**
3. **Include proper logging**
4. **Add evaluation metrics**
5. **Document hyperparameter effects**
### Adding New Data Loaders
For data pipeline additions:
1. **Support streaming when possible**
2. **Include quality filtering options**
3. **Add proper error handling**
4. **Support multiple formats**
5. **Include data validation**
## π§ͺ Testing Guidelines
### Test Structure
```
tests/
βββ unit/ # Unit tests for individual components
βββ integration/ # Integration tests for workflows
βββ fixtures/ # Test data and fixtures
βββ conftest.py # Pytest configuration
```
### Writing Tests
1. **Use descriptive test names**
```python
def test_transformer_block_forward_pass_with_attention_mask():
```
2. **Test edge cases and error conditions**
```python
def test_model_raises_error_with_invalid_vocab_size():
```
3. **Use fixtures for common setup**
```python
@pytest.fixture
def small_model_config():
return ModelConfig(vocab_size=1000, n_embd=128, n_layer=2)
```
4. **Mock external dependencies**
```python
@patch('wandb.init')
def test_training_without_wandb(mock_wandb):
```
### Performance Tests
Include performance benchmarks for:
- Model forward/backward pass timing
- Memory usage patterns
- Throughput measurements
## π Documentation
### Code Documentation
- **Docstrings**: Use Google style for all public APIs
- **Type hints**: Required for all function signatures
- **Comments**: Explain complex algorithms and business logic
### User Documentation
- **README updates**: For user-facing changes
- **Configuration docs**: For new parameters
- **Examples**: Include usage examples
- **Migration guides**: For breaking changes
## π Release Process
### Version Numbering
We follow [Semantic Versioning](https://semver.org/):
- `MAJOR.MINOR.PATCH`
- Major: Breaking changes
- Minor: New features (backwards compatible)
- Patch: Bug fixes
### Release Checklist
1. Update version in `setup.py`
2. Update `CHANGELOG.md`
3. Run full test suite
4. Update documentation
5. Create release PR
6. Tag release after merge
7. Update GitHub release notes
## π― Priority Areas
We're particularly interested in contributions to:
1. **Performance optimizations**
- Memory efficiency improvements
- Training speed optimizations
- Inference acceleration
2. **New model architectures**
- Novel attention mechanisms
- Advanced MoE strategies
- Multi-modal improvements
3. **Training improvements**
- Better data loading
- Advanced RLHF techniques
- Distributed training optimizations
4. **Evaluation and benchmarking**
- New benchmark integrations
- Evaluation metrics
- Analysis tools
5. **Documentation and examples**
- Tutorial notebooks
- Use case examples
- API documentation
## β Questions?
- **General questions**: Open a [Discussion](https://github.com/yourusername/ultrathink/discussions)
- **Bug reports**: Open an [Issue](https://github.com/yourusername/ultrathink/issues)
- **Feature requests**: Open an [Issue](https://github.com/yourusername/ultrathink/issues) with the feature template
- **Security issues**: Email security@ultrathink.ai
## π Recognition
Contributors will be:
- Listed in the README
- Mentioned in release notes
- Invited to the contributors team (for significant contributions)
Thank you for helping make ULTRATHINK better! π
|