SadraCoding commited on
Commit
3c1d22f
·
verified ·
1 Parent(s): fb0dc7f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -2
README.md CHANGED
@@ -14,7 +14,7 @@ As generative AI (like SDXL, DALL·E, and Midjourney) becomes more accessible, t
14
 
15
  ## 🚀 Model Overview
16
 
17
- **SDXL-Deepfake-Detector** is a fine-tuned vision transformer that classifies human faces as **Real (0)** or **AI-Generated (1)**. Trained on the [140k Real and Fake Faces](https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces) dataset, it achieves **91% accuracy** on held-out test data and generalizes well across diverse synthesis methods.
18
 
19
  ### ✅ Key Highlights
20
  - **Architecture**: Fine-tuned Vision Transformer (ViT) via Hugging Face `transformers`
@@ -32,6 +32,7 @@ pip install transformers torch pillow
32
  ```
33
  ### Python Script
34
  ```python
 
35
  import argparse
36
  from transformers import AutoModelForImageClassification, AutoFeatureExtractor
37
  from PIL import Image
@@ -80,4 +81,59 @@ def main():
80
 
81
  if __name__ == "__main__":
82
  main()
83
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  ## 🚀 Model Overview
16
 
17
+ **SDXL-Deepfake-Detector** is a fine-tuned vision transformer that classifies human faces as **AI-Generated (0)** or **Real (1)**. Trained on the [140k Real and Fake Faces](https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces) dataset.
18
 
19
  ### ✅ Key Highlights
20
  - **Architecture**: Fine-tuned Vision Transformer (ViT) via Hugging Face `transformers`
 
32
  ```
33
  ### Python Script
34
  ```python
35
+ #predict.py
36
  import argparse
37
  from transformers import AutoModelForImageClassification, AutoFeatureExtractor
38
  from PIL import Image
 
81
 
82
  if __name__ == "__main__":
83
  main()
84
+ ```
85
+ ### How to use
86
+ ```bash
87
+ python predict.py --image path/to/image
88
+ ```
89
+
90
+ ## 📊 Performance & Limitations
91
+
92
+ > **Note**: Final test accuracy will be reported after full evaluation. Preliminary results show strong generalization on SDXL- and diffusion-based face forgeries.
93
+
94
+ ### Known Limitations
95
+ - Trained primarily on **frontal, well-lit, aligned face crops** — may underperform on:
96
+ - Low-resolution or blurry images
97
+ - Heavily occluded or non-frontal faces
98
+ - GAN-generated faces (e.g., StyleGAN2/3)
99
+ - Label mapping:
100
+ - `0` → `"artificial"` (AI-generated / Deepfake)
101
+ - `1` → `"real"` (authentic human face)
102
+
103
+ > ⚠️ This tool is **not a forensic proof**, but a probabilistic detector. Use responsibly.
104
+
105
+ ---
106
+
107
+ ## 🌱 Philosophy & Ethics
108
+
109
+ This model is open-source because:
110
+ - **Transparency** is essential in the fight against synthetic media.
111
+ - **Accessibility** ensures researchers, journalists, and civil society can audit and use detection tools without gatekeeping.
112
+ - **Privacy matters**: The model runs **entirely offline** — your images never leave your device.
113
+
114
+ As a developer from a vulnerable community, I believe AI safety tools must be **inclusive, ethical, and human-centered** — not just technically accurate.
115
+
116
+ ---
117
+
118
+ ## 🙌 Acknowledgements
119
+
120
+ - **Dataset**: [140k Real and Fake Faces](https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces) by xhlulu
121
+ - **Framework**: [Hugging Face Transformers](https://huggingface.co/docs/transformers)
122
+ - **Model & Code**: [GitHub Repository](https://github.com/SadraCoding/SDXL-Deepfake-Detector) | [Hugging Face Hub](https://huggingface.co/SADRACODING/SDXL-Deepfake-Detector)
123
+
124
+ ---
125
+
126
+ ## 📬 How to Contribute
127
+
128
+ I welcome:
129
+ - Bug reports and feature requests (via GitHub Issues)
130
+ - Expanding support to **video deepfakes** or **GAN-generated faces**
131
+ - **Bias/fairness audits** across gender, skin tone, and age
132
+ - Multilingual documentation
133
+
134
+ > 💡 **Tip for researchers**: Fine-tune this model on your domain-specific data using Hugging Face `Trainer`.
135
+
136
+ ---
137
+
138
+ > *Built with curiosity, ethics, and a 12GB GPU — because impactful AI doesn’t require a data center, just purpose.*
139
+ > — Sadra Milani Moghaddam