HumanMachine74 commited on
Commit
71eb2ee
·
verified ·
1 Parent(s): bf3ec6a

Add README.md with model card

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: scikit-learn
3
+ tags:
4
+ - classification
5
+ - tabular-data
6
+ metrics:
7
+ accuracy: 0.6629
8
+ precision: 0.6890
9
+ recall: 0.8482
10
+ f1: 0.7603
11
+ params: {"max_depth": 10, "min_samples_leaf": 1, "min_samples_split": 10, "n_estimators": 200}
12
+ ---
13
+ # Random Forest Classifier for Engine Condition Prediction
14
+
15
+ This repository contains a trained `RandomForestClassifier` model for predicting engine condition (Normal vs. Faulty) based on various engine parameters.
16
+
17
+ ## Model Details
18
+
19
+ - **Algorithm**: RandomForestClassifier
20
+ - **Framework**: scikit-learn
21
+
22
+ ## Performance Metrics (on Test Set)
23
+
24
+ - **Accuracy**: 0.6629
25
+ - **Precision**: 0.6890
26
+ - **Recall**: 0.8482
27
+ - **F1-Score**: 0.7603
28
+
29
+ ## Hyperparameters
30
+
31
+ ```json
32
+ {
33
+ "max_depth": 10,
34
+ "min_samples_leaf": 1,
35
+ "min_samples_split": 10,
36
+ "n_estimators": 200
37
+ }
38
+ ```
39
+
40
+ ## Usage
41
+
42
+ To load and use this model:
43
+
44
+ ```python
45
+ import joblib
46
+ from huggingface_hub import hf_hub_download
47
+
48
+ model_path = hf_hub_download(repo_id="HumanMachine74/engine-performance-data-model", filename="random_forest_model.joblib")
49
+ model = joblib.load(model_path)
50
+
51
+ # Example prediction (assuming X_new is your new data)
52
+ # predictions = model.predict(X_new)
53
+ ```