Add README.md with model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: scikit-learn
|
| 3 |
+
tags:
|
| 4 |
+
- classification
|
| 5 |
+
- tabular-data
|
| 6 |
+
metrics:
|
| 7 |
+
accuracy: 0.6629
|
| 8 |
+
precision: 0.6890
|
| 9 |
+
recall: 0.8482
|
| 10 |
+
f1: 0.7603
|
| 11 |
+
params: {"max_depth": 10, "min_samples_leaf": 1, "min_samples_split": 10, "n_estimators": 200}
|
| 12 |
+
---
|
| 13 |
+
# Random Forest Classifier for Engine Condition Prediction
|
| 14 |
+
|
| 15 |
+
This repository contains a trained `RandomForestClassifier` model for predicting engine condition (Normal vs. Faulty) based on various engine parameters.
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
- **Algorithm**: RandomForestClassifier
|
| 20 |
+
- **Framework**: scikit-learn
|
| 21 |
+
|
| 22 |
+
## Performance Metrics (on Test Set)
|
| 23 |
+
|
| 24 |
+
- **Accuracy**: 0.6629
|
| 25 |
+
- **Precision**: 0.6890
|
| 26 |
+
- **Recall**: 0.8482
|
| 27 |
+
- **F1-Score**: 0.7603
|
| 28 |
+
|
| 29 |
+
## Hyperparameters
|
| 30 |
+
|
| 31 |
+
```json
|
| 32 |
+
{
|
| 33 |
+
"max_depth": 10,
|
| 34 |
+
"min_samples_leaf": 1,
|
| 35 |
+
"min_samples_split": 10,
|
| 36 |
+
"n_estimators": 200
|
| 37 |
+
}
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
## Usage
|
| 41 |
+
|
| 42 |
+
To load and use this model:
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
import joblib
|
| 46 |
+
from huggingface_hub import hf_hub_download
|
| 47 |
+
|
| 48 |
+
model_path = hf_hub_download(repo_id="HumanMachine74/engine-performance-data-model", filename="random_forest_model.joblib")
|
| 49 |
+
model = joblib.load(model_path)
|
| 50 |
+
|
| 51 |
+
# Example prediction (assuming X_new is your new data)
|
| 52 |
+
# predictions = model.predict(X_new)
|
| 53 |
+
```
|