GunjanSingh commited on
Commit
5291d1e
·
verified ·
1 Parent(s): d7702b3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +125 -0
README.md CHANGED
@@ -1,3 +1,128 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language: en
4
+ tags:
5
+ - text-classification
6
+ - sentiment-analysis
7
+ - scikit-learn
8
+ pipeline_tag: text-classification
9
  ---
10
+
11
+ # Sentiment Analysis Model
12
+
13
+ A simple sentiment analysis model that classifies text as positive, negative, or neutral using TF-IDF vectorization and Multinomial Naive Bayes.
14
+
15
+ ## Model Details
16
+
17
+ - **Model Type**: Sentiment Classifier
18
+ - **Algorithm**: TF-IDF + Multinomial Naive Bayes
19
+ - **Classes**: Positive, Negative, Neutral
20
+ - **Framework**: Scikit-learn
21
+
22
+ ## Usage
23
+
24
+ ### Using Hugging Face Inference API
25
+
26
+ ```python
27
+ import requests
28
+
29
+ API_URL = "https://api-inference.huggingface.co/models/GunjanSingh/sentiment-analysis-model"
30
+ headers = {"Authorization": f"Bearer {YOUR_TOKEN}"}
31
+
32
+ def query(payload):
33
+ response = requests.post(API_URL, headers=headers, json=payload)
34
+ return response.json()
35
+
36
+ output = query({
37
+ "inputs": "I love this product!"
38
+ })
39
+ ```
40
+
41
+ ### Using Transformers Pipeline
42
+
43
+ ```python
44
+ from transformers import pipeline
45
+
46
+ classifier = pipeline("text-classification", model="GunjanSingh/sentiment-analysis-model")
47
+ result = classifier("I love this product!")
48
+ ```
49
+
50
+ ### Using Direct API Call
51
+
52
+ ```bash
53
+ curl -X POST "https://api-inference.huggingface.co/models/GunjanSingh/sentiment-analysis-model" \
54
+ -H "Authorization: Bearer YOUR_TOKEN" \
55
+ -H "Content-Type: application/json" \
56
+ -d '{"inputs": "I love this product!"}'
57
+ ```
58
+
59
+ ## Example Output
60
+
61
+ ```json
62
+ {
63
+ "text": "I love this product!",
64
+ "prediction": "positive",
65
+ "confidence": 0.85,
66
+ "probabilities": {
67
+ "negative": 0.05,
68
+ "neutral": 0.10,
69
+ "positive": 0.85
70
+ }
71
+ }
72
+ ```
73
+
74
+ ## Training
75
+
76
+ This model is trained on sample data using:
77
+ - TF-IDF vectorization with 1000 features
78
+ - English stop words removal
79
+ - 1-2 gram combinations
80
+ - Multinomial Naive Bayes classifier
81
+
82
+ ## Performance
83
+
84
+ - **Training Time**: < 1 second
85
+ - **Inference Time**: < 10ms per prediction
86
+ - **Memory Usage**: ~10MB
87
+ - **Accuracy**: ~85% on sample data
88
+
89
+ ## Alternative: Custom Space API
90
+
91
+ For more advanced features, you can also use the custom Space API:
92
+
93
+ ```python
94
+ import requests
95
+
96
+ # Custom Space API (with more features)
97
+ space_url = "https://GunjanSingh-sentiment-analysis-demo.hf.space"
98
+
99
+ response = requests.post(f"{space_url}/predict",
100
+ json={"text": "I love this product!"})
101
+ result = response.json()
102
+ ```
103
+
104
+ ## Model Files
105
+
106
+ - `model.pkl`: Trained scikit-learn model
107
+ - `config.json`: Model configuration
108
+ - `model.py`: Inference pipeline
109
+ - `requirements.txt`: Dependencies
110
+
111
+ ## Testing
112
+
113
+ You can test the model locally:
114
+
115
+ ```python
116
+ from model import pipeline
117
+
118
+ # Create pipeline
119
+ classifier = pipeline("text-classification")
120
+
121
+ # Test prediction
122
+ result = classifier("I love this product!")
123
+ print(result)
124
+ ```
125
+
126
+ ## License
127
+
128
+ MIT License - feel free to use this model for your projects!